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A Solute Diffusion Model for Micro-Macroscopic Analysis 
of Columnar Dendritic Alloy Solidification 

H o s e o n  Yoo* and C h a r n - J u n g  Kim** 
(Received June 28, 1996) 

A new solute diffusion model for columnar dendritic alloy solidification based on a two 

-phase expanding volume element is developed to refine the existing multiphase model. In 

particular, individual effect of dendrite arm coarsening and back diffusion is incorporated in the 

model equation separately from each other. This formulation not only leads to successful 

identification of the behind-the-scene cause of the uncertainty associated with the coarsening 

inherent in the multiphase model, but also yields more accurate prediction compared with 

available experimental and numerical data. Taking advantage of  the analytical solution for the 

diffusion-controlled limit, the approximation of the parabolic  concentration profile commonly 

adopted in solidification modelings is also justified legitimately. A sample calculation in the 

absence of  back diffusion clarifies the effect of  coarsening on the evolutions of  the solid fraction 

along different cooling paths, in that the eutectic fraction with coarsening is always smaller than 

that without it, and a rapid cooling during the early stage of dendritic solidification is favorable 

for homogenizing the final composit ion of alloy microstructures. In addit ion to the capabili ty 

of resolving fundamental solute transport  mechanisms, the compactness and consistency retained 

in the formulation make the present model suitable for use in the coupled micro-macroscopic 

analysis of  dendritic alloy solidification as a microscopic component. 
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C : Concentration 

C : Average concentration 

D : Mass diffusivity 

f : Mass fraction 

g ; Volume fraction 

kp : Equilibrium partition coefficient 

l : Diffusion length 

n : Coarsening exponent 

S : interfacial area concentration 

s : Position of  the sol id- l iquid interface 
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t : Time 

X : Size of the expanding domain 
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/]2 : Secondary dendrite arm spacing 
p : Density 
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s : Solid phase 

I. I n t r o d u c t i o n  

Modeling of transport phenomena occurring 

during dendritic alloy solidification has attracted 

considerable research attention in the past several 

decades. A variety of theoretical-numerical  

models have been developed to predict the 

fundamental characteristics of the alloy solidifica- 

tion such as microstructure formation, solute 

redistribution, cooling curve, channel and freckle 

formation, shrinkage, and so on (Rappaz, 1989; 

Viskanta, 1990). One of the most challenging 

problems involved in solidification modeling is 

the complex interaction between physical phe- 

nomena which take place on different length 

scales ranging from the grain size to the system 

level, as reviewed by Beckermann and Viskanta 

(1993). 
Recently, a promising approach termed micro 

-macroscopic modeling has been proposed  

(Rappaz, 1989; Rappaz and Voller, [990; Voller, 

1993), in which microscopic phenomena such as 

back diffusion, dendrite arm coarsening, nuclea- 

tion and undercooling are incorporated into 

macroscopic heat flow calculations in order to 

capture the microstructural properties of a 

solidifying alloy on the system scale. A key com- 

ponent in this approach is the solute diffusion 

model which provides the evolution of the local 

solid fraction for use in the macroscopic conserva- 

tion equations, and thus plays the role of  a lin- 

kage between the microscopic and macroscopic 

aspects of dendritic solidification (Voller, 1993). 

Since the solute diffusion process during colum- 

nar dendritic growth is influenced primari ly by 

back diffusion, dendrite arm coarsening and den- 

drite tip undercooling (Kurz and Fisher, 1989), 
research efforts have been focusing on how to 

properly account for these effects in modeling. 

The sole effect of back diffusion in the solid has 

been well understood and incorporated in the 

solute diffusion model since the early studies, 

yielding not only the wel l -known [ever rule and 

the Scheil equation but also some analytical and 

semi-analytical  solutions such as those by Brody 

and Flemings (1966), Clyne and Kurz (1981), 

Ohnaka (1986), and Kobayashi  (1988). A num- 

ber of  numerical models which can handle the 

combined effects of back diffusion and dendrite 

arm coarsening have also been developed (Roosz 

et al., 1986; Ogilvy and Kirkwood,  1987; Battle 

and Pehlke, 1990; Sundarraj and Voller, 1993) 

since the dominant role of coarsening during the 

solute redistribution was verified. On the other 

hand, the dendrite tip undercooling at the colum- 

nar front has not received research attention so 

much as back diffusion and /o r  dendrite arm 

coarsening, because its effect becomes significant 

under relatively restricted conditions, e. g., during 

rapid solidification processes (Giovanola and 

Kurz, 1990). 

More recently, Beckermann and coworkers 

have developed the so-called multiphase micro 

-macroscopic model using the volume averaging 

technique, which, they claimed, could effectively 

incorporate nearly all of the microscopic mecha- 

nisms present in dendritic solidification on differ- 

ent length scales including nucleation, growth 

kinetics and dendrite morphology. Basic concept, 

detailed derivation procedure and some typical 

results of the multiphase model can be found in 

references (Ni and Beckermann, 1990; Wang and 

Beckermann, 1993a), and thus are not repeated 

here. Depending on the extent of simplifications, 

various versions of the model equations have 

been derived (Wang and Beckermann, 1993a) 

and applied to selected cases of  interest success- 

fully (Schneider and Beckermann, 1995a; 1995b). 

They have also demonstrated that the mode[ 

equations reduced to the lever rule and the Scheil 

equation for the limiting cases of back diffusion 

(Wang and Beckermann, 1993b). At present, the 

multiphase model seems to be one of  the most 

flexible and  sophisticated among diverse solidifi- 

cation models reported in the open literature. 

Nevertheless, careful investigation on the model 

equations still leads to a problem about incorpo- 

ration of dendrite arm coarsening phenomena in 

the solute diffusion model. Specifically, the effect 

of coarsening is reflected in the solid-phase solute 

balance equation of the multiphase model only by 
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the interfacial area concentration which consti- 

tutes the phase interaction term together with 

mass diffusion coefficient, diffusion length and 

interfacial concentration difference between the 

adjacent phases. The apparent problem is that the 

phase interaction term becomes zero when the 

back diffusion is absent. Therefore, in such cir- 

cumstances, the coarsening which already proved 

to affect the solute diffusion process significantly 

is forced to be neglected in the analysis. However, 

neither the evidence of interrelation that the coar- 

sening does not take place in the absence of  back 

diffusion has been reported, nor another means 

except the interfacial area concentration by which 

the coarsening can be incorporated in the solute 

diffusion model are found. It is an established fact 

that the coarsening results from the local remelt- 

ing of  dendrite arms due to the curvature or 

surface energy effect (Flemings, 1974) and 

appears to be independent of back diffusion. 

The aim of this work is not only to clarify the 

uncertainty associated with the coarsening in the 

solute balance equation of the multiphase model, 

but also to present an alternative solute diffusion 

model suitable for micro-macroscopic analysis of 

dendritic solidification in which the coarsening as 

well as the back diffusion is rigorously incorpo- 

rated, in developing the new model, some simpli- 

fications are introduced within the extent of  fun- 

damental characteristics of the microscopic trans- 

port mechanisms being resolved. The developed 

model is discussed formally in comparison with 

the multiphase model first, and then is validated 

quantitatively by comparing the predicted results 

using it for a specific case with available data 

from the experiment as well as the numerical 

simulz.tion. In addition, the parabolic concentra- 

tion profile in the solid which has been common- 

ly adopted in the solute diffusion modelings 

(Ohn~ka, 1986; Ni and Beckermann, 1990) is 

reexamined to confirm its validity. Finally, the 

effect of coarsening on the evolution of  the local 

solid fraction along different cooling paths during 

dendritic solidification is investigated as an appli- 

cation of the present model. 

2. Problem Def in i t ion  

in order to specify the problem involved in the 

multiphase model, the solute balance equation in 

the solid needs to be considered. Before doing it, 

the basic features of the multiphase approach are 

briefly addressed here to understand its frame- 

work. The multiphase model is essentially 

intended to account for the different microscopic 

length scales of physical significance existing in a 

dendritic structure as many as possible in the 

macroscopic calculations. According to Wang 

and Beckermann (1993a), this has been accom- 

plished by considering not only the physical solid 

and liquid phases but also phases associated with 

different length scales such as the interdendritic 

and extradendritic liquids separately and averag- 

ing the field variables of each phase over an 

appropriate-sized volume element. The macro- 

scopic (or volume averaged) conservation equa- 

tions for each phase are derived fi'om the micro- 

scopic counterparts in such a way that the phase 

interaction term resulting from the volume averag- 

ing process is expressed as a function of the 

characteristic lengths of each phase such as the 

interracial area concentration and the diffusion 

length. The characteristic lengths of each phase 

can be specified by the topology of the micros- 

tructure concerned. 

Now, restricting our attention to the solute 

diffusion in the solid phase under consideration, 

the volume-averaged solute balance equation for 

a typical control (or averaging) volume shown in 

Fig. 1 (a) is expressed, in the present notation, as 

d 
~" . . . .  dl - l.~ \ Cs, ) 

where S~ and /~ denote the interfacial area con- 

centration, i. e. the sol id- l iquid interfacial area 

per unit volume, and the diffusion length the 

definition of which can be found in Wang and 

Beckermann (1993a), respectively. The interfacial 

solid concentration Cs,. is related to the liquid 

concentration, under the local equilibrium at the 

interface, a s  C s i = k p C l  . In deriving Eq. (1), 
solute transport  due to either diffusion or convec- 
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Representative volume elements used for 
describing (a) the macroscopic, and (b) the 
microscopic solidification characteristics. 

tion on the macroscopic scale has been neglected. 

It is apparent in Eq. (1) that the interfacial area 

concentration Ss is the only term capable of 

implying the effect of  dendrite arm coarsening. 

However, note that, in the absence of  back diffu- 

sion, i.e. psDsSs/ls=O, the model equation by no 

means accounts for the coarsening, as mentioned 

in Introduction. Nevertheless, such an important 

problem has never been pointed out in the litera- 

ture yet. 

From the physical point of  view, the dendrite 

arm coarsening is regarded as affecting the overall 

solute diffusion process in the following two 

ways. One is that it decreases the interracial area 

concentration of an averaging volume, thereby 

making the volume-averaged diffusive flux across 

the interface (the back diffusion) smaller. The 

other is that it increases the secondary dendrite 

arm spacing A2(t), which, in effect, brings forth 

the reduction of either the solid volume fraction 

gs at the same phase change rate or the average 

concentration in the solid phase C~. The former is 

anyhow reflected in the model by the second term 

on RHS of Eq. (1), whereas the latter is not 

apparently. Therefore, at a glance, the problem at 

issue may be caused by neglecting only the second 
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effect of coarsening in the formulation of the 

multiphase model. However, the true source of 

the problem originates from the other fact, which 

will be clarified in detail later. 

For  the sake of the comparative discussion 

followed, let us specify Ss and ls in terms of the 

microscopic characteristic lengths and simplify 

Eq. (1). Assuming the well-mixed interdendritic 

and extradendritic liquids (the separate handling 

of them is not directly relevant to the present 

problem),  and defining X ( t ) = A 2 ( I ) / 2 ,  a simple 
one-dimensional  platelike geometry of the secon- 

dary dendrite arms yields (Wang and Becket- 

mann, 1993a) 

Ss = I / X  (2) 

For  such a geometry with the parabolic concen- 

tration profile in the solid (Ohnaka, 1986), the 

diffusion length L is readily related to the inter- 

face position s as (Wang and Beckermann, 1993a) 

L = s / 3  (3) 

It is further assumed that the solid density ps is 

independent of time (but may depend on the 

concentration),  which is valid for many dilute 

alloys of  practical interest (Poirier et al., 1991). 

Then, Eq. (1) reduces to 

dt gsCs = Cs, dt 

3. Modeling 

It is desired that a new solute diffusion model 

not only accounts for the effect of dendrite arm 

coarsening completely, but also is suitable for 

coupling with the macroscopic heat flow calcula- 

tions. To this end, introduced is the postulate that 

the solute diffusion characteristics of  the macro- 

scopic control volume can be represented, in an 

average sense, by those of a microscopic volume 

element the size of which is half a secondary 

dendrite arm spacing A2(I) (see the box in Fig. 1 

(a)) .  The volume element adopted here differs 

substantially from that for the microscopic conser- 

vation equations of each phase in the above- 

mentioned multiphase model in that the present 
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one consists of not a single phase but two phases 

and expands with time. This type of volume 

element is not a new one but has been commonly 

used in the microsegregation modelings, e. g., by 

Battle and Pehlke (1990). Although it has not 

been Proved at this stage that the introduced 

postulate is physically realistic, few attempt has 

been made to facilitate the solute diffusion model 

based on it for use in the micro-macroscopic 

analysis (Voller, 1993). 

Referring to the enlarged plot of  the micro- 

scopic volume element in Fig. I (b) and the sim- 

plifications adopted in deriving Eq. (4), the inte- 

gral form of the solute balance in the solid phase 

is expressed as (Ohnaka, 1986; Kurz and Fisher, 

1989) 

- ds d ( sCs )=Cs i~_  + DsSCs(s, t) (5) 
dt 8x 

where s ( t )  denotes the sol id- l iquid interface 

position. When the same parabolic concentration 

profile in the solid as in Eq. (4) is invoked, Eq. 

(5) takes the form of 

d [  ~ \ ,-, ds + 3D~[,, C~) 
dl kst~s}=CS'-di - ~ C s , - -  (6) 

Note [hat Eq. (6) has been derived under almost 

the same assumptions and is cast in the apparent- 

ly similar form with Eq. (4) although the 

approaches differ from one another. 

In order to examine the distinction between the 

multiphase and the present solute diffusion 

-model.,; and to pick up the origin of  the problem 

described before formally in advance of  the 

validation of the developed model, Eq. (6) is 

rearranged in terms of the solid volume fraction 

defined by (see Fig. l ( b ) )  

g ~ = s / X  (7) 

Then, the resulting equation is expressed as 

dt C ~c-~- 
aDz 1 d X  

(8) 
Although the only difference between Eqs. (4) 

{ 1 dX~ in Eq. and (8) is an additional term \ ~ 2 = ~ - ]  

(8), the term, which can be interpreted physically 

as the expansion rate of  a secondary dendrite arm 

spacing, manifests the problem associated with 

coarsening in the solute diffusion process. First of  

all, contrary to Eq. (4), Eq. (8) explicitly 

includes the effect of  coarsening via the volume 

expansion rate term even in the absence of  back 

diffusion. The more important point is that Eq. 

(8) coincides with Eq. (4) when the dendrite arm 

spacing is fixed, i . e . X ( t ) = c o n s t .  This fact 

implies, in a theoretical sense, that the effect of  

coarsening was not partly, as described in con- 

junction with Eq. (1), but completely ignored in 

the multiphase model presuming that the present 

model is perfectly valid, in practice, however, it is 

not likely that the effect of  coarsening have been 

completely neglected in the reported results by the 

multiphase model, not only because the t ime- 

dependent secondary dendrite arm spacings 

instead of  the fixed ones have been used for the 

coefficient of the second term on RHS of Eq. (4) 

(Wang and Beckermann, .1993b), but also 

because the present model may not be a perfect 

one. These aspects can be estimated only by 

rigorous model validation, in Eq. (4), even when 

a more sophisticated geometric model for the 

secondary dendrite arm structure is adopted to 

specify S.~ and/~ instead of  Eqs. (2) and (3), only 

a numerical factor will be changed in the coeffi- 

cient of the second term on RHS. As for the two 

effects of  coarsening on the solute diffusion, the 

first and the second terms in the square bracket in 

Eq. (8) correspond to them in sequence. The 

above observations lead to the conclusion that the 

present model accounts for the effect of coarsen- 

ing more properly than the muhiphase model at 

least in a formal view, apart  from the ultimate 

validity of the model equation itself. Also, it is 

obvious that Eq. (4) is merely a subset of Eq. (8). 

Meanwhile, it is meaningful to note that the 

framework of computat ional  procedure devel- 

oped for the multiphase model (e. g., Wang and 

Beckermann, 1993b) can be readily applied to the 

present case with only minor changes due to the 

addit ion of  the volume expansion rate term. 

For  evaluating the solid volume fraction and 

the average solid concentration at the prescribed 

temperature with the aid of  Eq. (7). the following 
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overall solute balance for the two-phase expand- 

ing volume element and initial conditions are 

needed 

gs=0;  Cs=C~i;  C~=Co at t = 0  (10) 

That is, gqs. (8), (9) and (10) constitute a set of 

governing equations for the present solute diffu- 

sion model, where the macroscopic solute trans- 

port is assumed to be suppressed. Ther- 

modynamic relations pertinent to the phase equi- 

librium, density dependency on the concentration 

and coarsening of the secondary dendrite arms 

should be supplemented for the closure of model- 

ing. The solid mass fraction corresponding to the 

solid volume fraction is calculated by 

f s=Psgs/  (Psgs+ Pzgi) (I1) 

The eutectic fraction, which denotes the un- 

solidified liquid fraction when the temperature or 

the liquid attains the eutectic state, is one of the 

meaningful results obtainable in the analysis of 

solute diffusion problem. From the combination 

of Eqs. (8) and (9), it can be easily deduced that 

the liquid fraction decreases with increasing back 

diffusion and/or  dendrite arm coarsening rate 

during dendritic solidification. This implies that 

the accumulated effects of primary parameters on 

the overall solute diffusion process can be re- 

presented by the eutectic fraction at the end of 

solidification (Sarreal and Abbaschian, 1985). 

Furthermore, the eutectic fraction is of practical 

importance in alloy solidification, because the 

solute concentration of  the eutectic solid is much 

higher than that of the dendritic solid in the final 

product (Kurz and Fisher, 1989). Accordingly, it 

has been commonly used as an index of the solute 

redistribution. 

4. Validation and Application 

So far, a new solute diffusion model based on 

the two-phase expanding volume element has 

been developed and formally discussed on its 

properties in comparison with the solute balance 

equation of the multiphase model. Obviously, the 

present model appears to be better than the 

multiphase model as far as the dendrite arm 

coarsening is concerned. The task to be under- 

taken is the validation of the developed model, 

which is followed by an application. 

The present model is validated by comparing 

the predicted eutectic volume fractions with avail- 

able data for a specific case. Directional solidifi- 

cation of  an A1-4.9% Cu alloy is selected for 

comparison, not only because experimental data 

for the wide range of the cooling rates have been 

reported by Sarreal and Abbaschian (1985), but 

also because a sophisticated numerical simulation 

has been performed (Sundarraj and Voller, 

1993). Moreover, numerical data for the calcula- 

tion including thermophysical properties, phase 

equilibrium diagram, density model, and coarsen- 

ing model have been well established for this 

system, which are documented in the works of 

Sundarraj and Voller (1993), Yoo (1996a), and 
elsewhere. 

Figure 2 shows the predicted eutectic volume 

fractions with respect to the cooling rate by both 

the present and the multiphase models in compar- 

ison with those from the experiment as well as the 

numerical simulation. In order to focus our atten- 

tion on the dendrite arm coarsening at issue, the 

effect of dendrite tip undercooling which creates 

F i g .  2 
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Comparison of the predicted eutectic volume 
fractions based on the present and the multi- 
phase models with data from the experiment 
and numerical simulation for the directional 
solidification of an AI Cu alloy. 
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another facit of the problem (see Flood and 

Hunt, 1987; Giovanola  and Kurz, 1990; Wang 

and Beckermann, 1993b) has been excluded in all 

model.,;. This, however, causes the common dis- 

agreement between the experiment and all predic- 

tions at high cooling rate where the dendrite tip 

undercooling predominates, in Fig. 2. Except 

such an extreme condition, the present predictions 

favorably agree with both of the experimental and 

the nurnerical data qualitatively and quantitative- 

ly over the wide range of the cooling rate. In 

contrast, the multiphase model, despite being 

based on almost the same simplifications, consid- 

erably overpredicts the experimental data, the 

present and numerical results. Since the only 

difference between the present and the multiphase 

models, is the volume expansion rate term, the 

overprcdiction obviously originates from the im- 

proper incorporation of the coarsening phenom- 

ena. This fact is consistent with the close agree- 

ment between the multiphase model predictions 

and the numerical results for the case of fixed arm 

spacings. In consequence, the fundamental postu- 

late introduced at the beginning of the present 

modeling can be said to hold from the physical 

reality. In regard to the computational  efforts, 

only a set of ordinary differential equations, Eqs. 

(8) ~ (10), is solved in the present model, where- 

as parlial differential equations should be anal- 

yzed in the numerical simulation (Sundarraj and 

Voller, 1993). This sort of facile character enables 

the present model to fit the micro-macroscopic 

analysis of  alloy solidification as a microscopic 

component. 
Recently, Yoo (1996b) has presented an analyt- 

ical solution to the solute diffusion problem for a 

certain limiting case, named the diffusion- 

controlled limit, where the back diffusion is 

absent, the equilibrium partition coefficient is 

constant, and the densities of the solid and liquid 

are equal and constant. Under the last condition, 

the volume and mass fractions are identical, i.e.f, 

= g , .  The solution is known to be 

kp C't- 1/<1-k~) f t x  C/~,~,'lz ~1 
( 1 - k p )  2 X ( I )  (t) 

x 
C t /  dt " (12) 

Equation (12) reduces to the well-known Scheil 

equation, 

f , = l  - (Co/C~)~/~l-hp~ (13) 

when the dendrite arm spacing is fixed, i.e. X ( t )  
--const.  Noting that the Scheil equation has been 

derived directly from the multiphase model, Eqs. 

(4), (9) and (10), under the same conditions 

with Eq. (12) (Wang and Beckermann, 1993b), 

the improper incorporation of coarsening in the 

multiphase model becomes evident once again. 

The parabolic concentration profile in the 

solid, a representative among the simplifications 

involved in solidification modeling, is worthy of 

rigorous verification, although it has been regard- 

ed as a commonly acceptable approximation since 

the work of Ohnaka (1986). Since Eq. (12) is 

completely free from the type of the concentration 

profile, the validity of  the approximation can be 

estimated by comparing the present prediction for 

the diffusion-controlled limit with Eq. (I2).  The 

predicted timewise evolution of the microscopic 

interface position which is very sensitive to the 

variation of the solid concentration is compared 

with the analytical  so lu t ion  for D+=0,  kp = 

0.14 and p.~=p~ in Fig. 3. Although considered 

here is only a limiting case, the excellent agree- 

ment between them suffices to validate the 

approximation.  The present verification which is 

l.O 
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Comparison of the timewise variation of the 
interface position between the present model 
prediction and the analytical solution for the 
diffusion-controlled limit. 
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attempted for the first time would provide the 

theoretical background for using the parabolic 

concentration profile in solidification modelings. ~ 

In the presence of back diffusion, the solute 

diffusion process depends strongly on the local 

solidification time, i.e. the cooling rate without 

regard to the dendrite arm coarsening, thereby 

resulting in, for example, different eutectic frac- 

tions as shown in Fig. 2 (Sarreal and Abbas- 

chian, 1985; Kurz and Fisher, 1989). On the other 

hand, in the absence of back .diffusion, it has long 

been recognized that the solute redistribution is 

independent of the local solidification time, since Fig. 4 

the Scheil equation, which relates the local solid 

fraction to the liquid or interfacial concentration 

and provides the universal microsegregation 

curve (Kurz and Fisher, 1989), has been exclu- 

sively invoked to evaluate the results such as the 1.0 

eutectic fraction. The multiphase model must 

produce the same results, because it reduces to the ~ 0.8 

Scheil equation for the diffusion~controlled limit. 

In reality, the above-mentioned fact in the ~ 0.6 

absence of back diffusion is true only when the 

dendrite arm spacings are fixed. However, the ~ 0.4 

coarsening always accompanies dendritic solidifi- 

cation. That is, the local solute redistribution may ~. 

depend on the cooling path even for the pre- 

scribed solidification time. 

As an application example of the present 

model, the timewise evolutions of the solid frac- Fig. 5 

tion along different cooling paths are investigat- 

ed. In order to concentrate on the effect of den- 

drite arm coarsening and to prevent the results 

from being smeared by the other effects, calcula- 

tions have been performed for zero back diffusion 

and for the same solidification t i m e ( t i =  I00 s for 

all cases under consideration) using the same 

numerical data as those for Fig. 2. Figures 4 and 5 

depict the variations of the solid fraction during 

dendritic solidification with and without coarsen- 

ing, respectively, each for three cooling patterns: 

square root, linear and quadratic temperature-- 

time relations. Since the overall solidification 

behaviors are influenced essentially by tem- 

perature variation, similar trends between Figs. 4 

and 5 appear to be reasonable. That is, consider- 
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able differences between the solid fraction curves 

corresponding to different cooling patterns at the 

same time are found in both of Figs. 4 and 5. 

From the physical point of view, in other words, 

considering that all the solute rejected from the 

solid phase due to the solubility difference piles 

up in the liquid phase in the absence of back 

diffusion, it is likely that the three cases with the 

same solidification time yield the same solid frac- 

tions at the same eutectic temperature or concen- 

tration. In practice, however, the foregoing state- 

ment proves to be true only when the dendrite 



A Solute Diffusion Model for Micro-Macroscopic Analysis of Columnar Dendritic Alloy Solidification 327 

arm spacing is fixed, but not when the coarsening 

takes place. That is, at the end of  solidification, 

the solid fraction of  each case in Fig. 5 coincides 

with each other, whereas those in Fig. 4 are 

distinct from one another. The quantitative differ- 

ences between the final solid fractions in Fig. 4 

are relatively small but non-negligible,  since they 

characterize the effect of coarsening on the den- 

dritic growth in the absence of back diffusion. 

This argument can be illustrated more clearly by 

the microsegregation curve, i. e. the liquid concen- 

t ra t ion-sol id  mass fraction diagram. Figure 6 

shows four microsegregation curves, three of 

which correspond to each case of  Fig. 4, respec- 

tively, and the last one represents the case of fixed 

arm spacings. Here, it should be noted that all 

cases without coarsening, e. g., three cases in Fig. 

5, turned out to reduce to the same curve regard- 

less of  the cooling pattern on the liquid concentra- 

t ion-sol id mass fraction plane. This can be 

deduced a priori from the Scheil equation, since 

Eq. (13) expresses a unique relation between the 

solid fraction and the liquid concentration, and is 

independent of time. 

Two observations can be made from Fig. 6. 

First, the effect of  coarsening grows significant as 

solidification proceeds, resulting in the eutectic 

fraction always smaller than that for the fixed 
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Microsegregation curves corresponding to 
three cooling paths in Fig. 4, and the case of 
fixed arm spacing in the absence of back 
diffusion. 

spacings at the final state. For  the case of  non- 

zero back diffusion, the qualitatively consistent 

results with this finding have already been 

presented in Fig. 2 (note the distinction existing 

between the present and the multiphase model 

predictions),  although the quantitative difference 

in the eutectic fraction between with and without 

coarsening should be affected by the solidification 

time or the cooling rate. Second, imposing a rapid 

cooling rate during the early stage of dendritic 

solidification is an efficient method tbr reducing 

the final eutectic fraction under the same solidifi- 

cation time. According to the established coarsen- 

ing models (Kirkwood,  1985; Roosz et al., 1986; 

Battle and Pehlke, 1990; Mortensen, 1991), the 

dendrite arm spacing is approximately propor- 

t ional  to l -z, where the exponent n ranges 

approximately from 0.29 to 0.33. Since the liquid 

volume, i. e. the dendrite arm spacing, remains 

small during the early solidification, the rapid 

cooling in this period effectively decreases the 

actually solidified port ion at relatively low con- 

centration, in spite of  high values of the solid 

fraction. Consequently, such a cooling pattern 

may contribute to reduce the microsegregation or 

to homogenize the final composit ion of the alloy 

microstructures. However, care should be taken to 

apply this method in the presence of back diffu- 

sion, because it also retards the back diffusion, 

thereby decreasing the solid concentration. The 

higher the average solid concentration, the smal- 

ler is the final eutectic fraction. 

Noting that the local solid fraction of  the 

control volume predominates the heat transport 

mechanism due to the release of the latent heat of 

fusion in the macroscopic calculations, the coar- 

sening which affects the local solid fraction-con- 

centration (or temperature) relation even in the 

absence of  back diffusion should be carefully 

taken into account in the micro-macroscopic 

analysis of dendritic alloy solidification. In this 

sense, the present solute diffusion model in which 

the dendrite arm coarsening as well as back 

diffusion is rigorously incorporated will be useful 

for determining proper values of the local solid 

fraction. The coupled micro-macroscopic analy- 

sis for a simple directional casting using the 
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present model is under way, the results of  which 

are to be presented soon. 

5. Conclusions 

Motivated by an overlooked uncertainty in the 

solute balance equation of the existing multiphase 

model, a new solute diffusion model for columnar 

dendritic alloy solidification has been developed 

in this work. The present model was primarily 

aimed at not only accounting for the key mecha- 

nisms pertinent to the solute redistribution on a 

microscopic scale rigorously, but also facilitating 

the micro-macroscopic analysis of dendritic solid- 

ification under the same level of simplifications 

with the existing models. The final results 

obtained throughout this work can be summar- 

ized as follows. 

Based on a two-phase expanding volume ele- 

ment representing the coarsening secondary den- 

drite arm spacings and with the aid of  the para- 

bolic concentration profile in the solid phase, a 

compact-form model equation for the solute 

diffusion process has been successfully derived. 

The model equation was so formulated that indi- 

vidual effect of  the dendrite arm coarsening and 

the back diffusion could be incorporated separate- 

ly from each other. Compared with the multi- 

phase model, the volume expansion rate term 

which characterizes the effect of coarsening is 

additionally included in the present equation. 

This formal comparison suffices to identify that 

the problem inherent in the multiphase model 

originates from the improper incorporat ion of 

coarsening possibly, during the volume averaging 

process or the formulation of  constitutive rela- 

tions. It can also be deduced from the model 

equation per se that the present model is more 

refined than the multiphase at least in describing 

the coarsening phenomenon. 

The model validation has been accomplished 

by comparing the predicted eutectic volume frac- 

tions by both the present and the mdltiphase 

models with available data from the experiment 

as well as the sophisticated simulation for the well- 

known directional solidification of  an AI-Cu 

alloy. While the present predictions agree closely 

with both the experimental and the numerical 

data over the wide range of the cooling rate, the 

multiphase model considerably overpredicts both 

of  them. Rather, the results from the multiphase 

model nearly coincide with the simulated data for 

the fixed arm spacings. It has been further con- 

firmed that these behaviors persist for the diffu- 

s ion-control led limit. Under such circumstances, 

the muhiphase model yields the Scheil equation 

directly, whereas the analytical solution which 

has relied on the same approach with this work 

reduces to the same consequence only in case of 

the fixed arm spacings. From these observations, 

it can be justified that not only the present model 

is physically more realistic, but also the behind- 

the-scene cause of the problem in the multiphase 

model is really associated with the coarsening. In 

addition, a legitimate background for using the 

parabolic concentration profile in solidification 

modelings has been established. That is, the tim- 

ewise variation of the microscopic interface posi- 

tion predicted by the present model for the diffu- 

s ion-control led limit proved to agree indistingui- 

shably with the above-mentioned analytical solu- 

tion which is free from the type of concentration 

profile. 

The practical utility of  the present model has 

been effectively demonstrated by an example, 

where the effect of coarsening in the absence of 

back diffusion on the evolutions of the local solid 

fraction along three different cooling patterns has 

been investigated under the same solidification 

time. A number of physically meaningful facts 

have been revealed about the role of coarsening. 

The liquid concentration-solid fraction diagrams 

with coarsening appear to depend considerably 

on the cooling pattern, whereas those without 

coarsening coincide with each other, yielding a 

unique microsegregation curve, in result, all the 

eutectic fractions with coarsening are always 

smaller than the unified value for the fixed arm 

spacings at the end of dendritic solidification. 

This implies that the solute diffusion models, such 

as the multiphase model, in which the effect of 

coarsening is improperly taken into account, tend 

to underpredict the final eutectic fraction of prac- 

tical importance. Another feature found is that 
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the eutectic fraction decreases with accelerating 
the cooling rate at early stages of  dendritic solidi- 
fication. Accordingly, it is possible to control the 
microsegregation of the final solidification prod- 
ucts by imposing the appropriately prescribed 
cooling patterns. However, the dependence of the 
eutectic formation on the cooling path in the 
presence of back diffusion needs further studies. 

In conclusion, noting that the present model 
proved to account for the fundamental solute 
diffusion mechanisms properly and was expressed 
in a compact form suitable for use within the 
existing framework of  computational procedure, 
the present model is expected to be feasible for the 
micro-macroscopic analysis of columnar den- 
dritic alloy solidification as a microscopic compo- 

nent. 
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